

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

page_title: “Servers.com: serverscom_network_pool”

network_pool

Get information on a Network Pool for use in other resources. This data source provides all of the Network Pool properties.

Example Usage

Get the Network Pool by ID:

data "serverscom_network_pool" "example" {
 id = "QeZ89zQb"
}

output "network_pool_example" {
 value = data.serverscom_network_pool.example.cidr
}

Get the Network Pool by CIDR:

data "serverscom_network_pool" "example" {
 cidr = "10.0.0.0/20"
}

Argument Reference

One of the following arguments must be provided:

	id - (Optional) The ID of the Network Pool.

	cidr - (Optional) The CIDR of the Network Pool.

Attributes Reference

The following attributes are exported:

	id: The ID of the Network Pool.

	cidr - The CIDR of the Network Pool.

	title - The title of the Network Pool.

	type - Type of the Network Pool.

	created_at - The creation time of the Network Pool.

page_title: “IP management”

IP management

Some network operations, such as a DNS records update, require some time to be completed. The Servers.com Terraform provider gives an opportunity to retrieve IP-addresses of a dedicated server before the provisioning process starts. It allows simultaneously configuring DNS records, networks, or software provisioning tools while the server is being prepared and is not yet ready to use.

We will consider a Terraform configuration with simultaneous dedicated servers being provisioned, and will set up the DNS A records for these hosts.

Preparing

This guide requires the Servers.com Terraform provider set up, and a Servers.com account to be present from your side. Please note, steps performed further will lead to the creation of a dedicated server that will be billed according to your plan.

You will need the following resources and data sources:

	serverscom_dedicated_server [https://registry.terraform.io/providers/serverscom/serverscom/latest/docs/resources/dedicated_server] - resource to complete the server’s specification;

	serverscom_subnetwork [https://registry.terraform.io/providers/serverscom/serverscom/latest/docs/resources/subnetwork] - resource for network management;

	serverscom_network_pool [https://registry.terraform.io/providers/serverscom/serverscom/latest/docs/data-sources/network_pool] - data source to obtain the network pool information.

Writing the specification

You need to write data section in the specification to point a necessary network pool with its ID (obtained through a support request):

data "serverscom_network_pool" "my_pool" {
 by {
 id = "my_pool_id"
 }
}

Next, it’s necessary to define the subnetwork size that will be allocated from the pool. The default subnetwork size is /29 (shown in the example below), you should leave this setting as is in most of the cases:

resource "serverscom_subnetwork" "my_network_1" {
 pool_id = serverscom.serverscom_network_pool.my_pool.id
 subnet = 29
}

Specify the A record’s parameters:

resource "some_dns_resource", "my_network_a_record_1" {
 type = "A"
 data = cidrhost(serverscom.serverscom_subnetwork.my_network_1.cidr, 4)
}

	type - type of the record, in our case it’s the A record;

	4 value in the data parameter means that the fourth IP-address of the subnetwork will be taken for the record.

Finally, you should complete the server’s configuration:

resource "serverscom_dedicated_server" "my_dedicated_server_1" {
 ...
 public_network_id = serverscom_subnetwork.my_network_1.id
	...
}

As a result, you will get the following specification for two dedicated servers provisioning with the A record set up for each one:

data "serverscom_network_pool" "my_pool" {
 by {
 id = "my_pool_id"
 }
}
resource "serverscom_subnetwork" "my_network_1" {
 pool_id = serverscom.serverscom_network_pool.my_pool.id
 subnet = 29
}
resource "some_dns_resource", "my_network_a_record_1" {
 type = "A"
 data = cidrhost(serverscom.serverscom_subnetwork.my_network_1.cidr, 4)
}
resource "serverscom_subnetwork" "my_network_2" {
 pool_id = serverscom.serverscom_network_pool.my_pool.id
 subnet = 29
}
resource "some_dns_resource", "my_network_a_record_2" {
 type = "A"
 data = cidrhost(serverscom.serverscom_subnetwork.my_network_2.cidr, 4)
}
resource "serverscom_dedicated_server" "my_dedicated_server_1" {
 ...
 public_network_id = serverscom_subnetwork.my_network_1.id
}
resource "serverscom_dedicated_server" "my_dedicated_server_2" {
 ...
 public_network_id = serverscom_subnetwork.my_network_2.id
}

page_title: “Servers.com User data”

User data

User data is a helpful tool to get rid of routine operations after server provisioning. You can get a ready-to-use server with additional software installed and configured according to your specification. The feature is built upon the cloud-init package for Linux operating systems. Cloud-init serves for performing operations while server’s initialization, its behavior is defined by a special type of content - user data. To manage post-install operations via Terraform, we have implemented the “user_data” argument in the serverscom_dedicated_server [https://registry.terraform.io/providers/serverscom/serverscom/latest/docs/resources/dedicated_server] resource.

The tutorial below will show you in practice how to configure your resource with operations performed after provisioning. As an example, we will create a server with a pre-installed Apache engine. Please note: the provisioned server will be billed according to your plan.

Preparing

You need to have a Terraform client installed and Servers.com account for performing the actions described further. To run the Servers.com provider click on the USE PROVIDER button in the upper right corner of the documentation page and follow the instruction. We will use the following script as the user data argument:

#! /bin/bash
sudo apt-get update
sudo apt-get install -y apache2
sudo systemctl start apache2
sudo systemctl enable apache2
echo "The page was created by the user data" | sudo tee /var/www/html/index.html

Adding the script to the user data

User data inserted in the tf file

Open the file that contains your terraform resource parameters, in our case it’s a main.tf file. Paste the script to the resource specification and use the format shown in the example. << EOF and EOF frame the script within the user_data argument.

resource "serverscom_dedicated_server" "node_1" {
 hostname = "node-1"
 location = "SJC1"
 server_model = "Dell R440 / 2xIntel Xeon Silver-4114 / 32 GB RAM / 1x480 GB SSD"
 ram_size = 32

 operating_system = "Ubuntu 20.04-server x86_64"

 private_uplink = "Private 10 Gbps with redundancy"
 public_uplink = "Public 10 Gbps with redundancy"
 bandwidth = "200000 GB"
 # ...
 # Some parameters are not displayed here to shorten the specification.
 # You can see the complete example of the resource in the relevant section of the documentation.
 # ...
 user_data = <<EOF
#! /bin/bash
sudo apt-get update
sudo apt-get install -y apache2
sudo systemctl start apache2
sudo systemctl enable apache2
echo "The page was created by the user data" | sudo tee /var/www/html/index.html
EOF

}

User data located in another file

If you want to place your script in another file, use the file() function. For this guide, we keep our script in the user-data-apache.sh file. Its content looks exactly the same as it’s shown in the Preparing section. The file is located in one directory with the main.tf file. This is how the configuration will look like:

resource "serverscom_dedicated_server" "node_1" {
 hostname = "node-1"
 location = "SJC1"
 server_model = "Dell R440 / 2xIntel Xeon Silver-4114 / 32 GB RAM / 1x480 GB SSD"
 ram_size = 32

 operating_system = "Ubuntu 20.04-server x86_64"

 private_uplink = "Private 10 Gbps with redundancy"
 public_uplink = "Public 10 Gbps with redundancy"
 bandwidth = "200000 GB"
 # ...
 # Some parameters are not displayed here to shorten the specification.
 # You can see the complete example of the resource in the relevant section of the documentation.
 # ...
 user_data = "${file("user-data-apache.sh")}"

}

Applying changes

When you have completed a configuration of a server, save changes and make commands to initialize and apply the configuration:

$ terraform init && terraform apply

Checking the result

When the server is provisioned, enter your server’s IP-address in the browser. As a result, you will see an HTML page with this text:
The page was created by the user data.

page_title: “Servers.com: serverscom_cloud_computing_instance”

serverscom_cloud_computing_instance

Provides an Servers.com cloud computing instance resource. This can be used to create, modify, and delete cloud computing instances. Cloud computing instances also support provisioning [https://www.terraform.io/docs/provisioners/index.html].

Example Usage

Create a new cloud computing instance

resource "serverscom_cloud_computing_instance" "instance_1" {
 name = "instance-1"
 region = "NL01"
 image = "Ubuntu 20.04-server (64 bit)"

 flavor = "SSD.50"

 gpn_enabled = true
 ipv6_enabled = true
 backup_copies = 5

 ssh_key_fingerprint = "cf:1d:09:ab:cb:47:97:3f:50:9a:f0:34:14:78:fa:1b"
}

Argument Reference

The following arguments are supported:

	name - (Required, string) Name of the cloud instance (according to RFC 1123 specification).

	region - (Required, string) Cloud computing region code.

	image - (Required, string) Name of the image.

	flavor - (Required, string) Name of the flavor.

	gpn_enabled - (Optional, bool) Is GPN network enabled. Defaults to false.

	ipv6_enabled - (Optional, bool) Is IPv6 enabled. Defaults to false.

	backup_copies - (Optional, int) Count of backup copies. Defaults to 0.

	ssh_key_fingerprint - (Optional, string) SSH key fingerprint.

Attributes Reference

The following attributes are exported:

	id - (string) Unique identifier of the cloud computing instance.

	name - (string) Name of the cloud instance (according to RFC 1123 specification).

	region - (string) Cloud computing region code.

	image - (string) Name of the image.

	flavor - (string) Name of the flavor.

	gpn_enabled - (bool) Is GPN network enabled. Defaults to false.

	ipv6_enabled - (bool) Is IPv6 enabled. Defaults to false.

	backup_copies - (int) Count of backup copies. Defaults to 0.

	status - (string) Status of the cloud computing instance.

	private_ipv4_address - (string) Private IPv4 address.

	public_ipv4_address - (string) Public IPv4 address.

	public_ipv6_address - (string) Public IPv6 address.

	openstack_uuid - (string) OpenStack unique identifier (UUID) of the cloud computing instance.

Import

Cloud computing instances can be imported using the cloud computing
instance id:

terraform import serverscom_cloud_computing_instance.instance_1 <id>

page_title: “Servers.com: serverscom_dedicated_server”

serverscom_dedicated_server

Provides a Servers.com dedicated server resource. This can be used to create, modify, and delete servers. Servers also support provisioning [https://www.terraform.io/docs/provisioners/index.html].

Example Usage

Create a new dedicated server:

resource "serverscom_dedicated_server" "node_1" {
 hostname = "node-1"
 location = "SJC1"
 server_model = "Dell R440 / 2xIntel Xeon Silver-4114 / 32 GB RAM / 1x480 GB SSD"
 ram_size = 32

 operating_system = "Ubuntu 16.04-server x86_64"

 private_uplink = "Private 10 Gbps with redundancy"
 public_uplink = "Public 10 Gbps with redundancy"
 bandwidth = "200000 GB"

 ssh_key_fingerprints = [
 "cf:1d:09:ab:cb:47:97:3f:50:9a:f0:34:14:78:fa:1b"
]

 ipv6 = true

 slot {
 drive_model = "480 GB SSD SATA"
 position = 0
 }

 layout {
 slot_positions = [0]

 partition {
 target = "/"
 size = 10240
 fill = false
 fs = "ext4"
 }

 partition {
 target = "/home"
 size = 1
 fill = true
 fs = "ext4"
 }

 partition {
 target = "swap"
 size = 4096
 fill = false
 }
 }
}

Argument Reference

The following arguments are supported:

	hostname - (Required, string) Name of the dedicated server (according to RFC 1123 specification).

	location - (Required, string) Location code of the dedicated server. For example: AMS1, SJC1, etc.

	server_model - (Required, string) Name of the dedicated server model.

	ram_size - (Optional, int) Size of the RAM (GB).

	operating_system - (Optional, string) The dedicated server operating system name.

	private_uplink - (Required, string) The dedicated server private uplink name.

	public_uplink - (Optional, string) The dedicated server public uplink name.

	bandwidth - (Optional, string) The dedicated server public bandwidth name.

	ssh_key_fingerprints.0 - (Optional, string) SSH key fingerprint.

	private_ipv4_network_id - (Optional, string) Private IPv4 network ID.

	public_ipv4_network_id - (Optional, string) Public IPv4 network ID.

	user_data - (Optional, string) A string of the desired user data for the dedicated server.

	ipv6 - (Optional, bool) Is IPv6 enabled. Defaults to false.

	slot - (Optional, list) List of drive slots.

	slot.0.position - (Required, int) Slot position.

	slot.0.drive_model_name - (Optional, string) The name of drive model to place in the slot.

	layout - (Optional, list) List of layouts.

	layout.0.slot_positions - (Required, list) List of slots which should be used in the layout.

	layout.0.raid - (Optional, int) RAID level for the layout.

	layout.0.partition - (Required, list) List of partitions for the layout.

	layout.0.partition.0.target - (Required, string) Target/Mount point for the partition.

	layout.0.partition.0.size - (Required, int) Size of the partition (MB).

	layout.0.partition.0.fill - (Optional, bool) Autofill partition by all unused space. When set to true

page_title: “Servers.com: serverscom_l2_segment”

serverscom_l2_segment

Provides an Servers.com l2 segment resource. This can be used to create, modify, and delete L2 segments.

Example Usage

Create a new L2 segment

resource "serverscom_l2_segment" "segment_1" {
 name = "l2-segment-1"
 type = "private"
 location_group = "SJC1"

 member {
 id = "QBeXDWey"
 mode = "native"
 }

 member {
 id = "4QbYEKbz"
 mode = "native"
 }
}

Argument Reference

The following arguments are supported:

	name - (Optional, string) Name of the L2 segment.

	type - (Required, string) Type of the L2 segment.

	location_group - (Required, string) Location group code.

	member - (Required, list) List of the L2 segment members.

	member.0.id - (Required, int) ID of the dedicated server.

	member.0.mode - (Required, string) Membership mode of the dedicated server.

Attributes Reference

The following attributes are exported:

	id - (string) Unique identifier of the L2 segment.

	name - (string) Name of the L2 segment.

	type - (string) Type of the L2 segment.

	location_group - (string) Location group code.

	member - (list) List of the L2 segment members.

	member.0.id - (int) ID of the dedicated server.

	member.0.mode - (string) Membership mode of the dedicated server.

	member.0.status - (string) Status of the membership.

	member.0.vlan - (int) VLAN number of the member.

	member.0.created_at - (string) Member created at.

	member.0.updated_at - (string) Member updated at.

	status - (string) Status of the L2 segment.

	created_at - (string) L2 segment created at.

	updated_at - (string) L2 segment updated at.

Import

L2 Segments can be imported using the l2 segment id:

terraform import serverscom_l2_segment.segment_1 <id>

page_title: “Servers.com: serverscom_ssh_key”

serverscom_ssh_key

Provides a Servers.com SSH key resource to manage SSH keys for dedicated server/cloud computing instance access.

Example Usage

Create a new SSH key

resource "serverscom_ssh_key" "default" {
 name = "Terraform Example"
 public_key = "${file("~/.ssh/id_rsa.pub")}"
}

Argument Reference

The following arguments are supported:

	name - (Required, string) Name of the SSH key.

	public_key - (Required, string) Public key. If this is a file, it can be read using the file interpolation function.

Attributes Reference

The following attributes are exported:

	id - (int) Unique identifier of the SSH key.

	name - (string) Name of the SSH key.

	public_key - (string) Public part of the SSH key.

	fingerprint - (string) Fingerprint of the SSH key.

Import

SSH keys can be imported using the SSH key fingeprint:

terraform import serverscom_ssh_key.default <fingerprint>

page_title: “Servers.com: serverscom_subnetwork”

serverscom_subnetwork

Provides a Servers.com Subnetwork resource to manage Subnetworks for dedicated server networks provisioning.

Example Usage

Create a new Subnetwork by mask:

resource "serverscom_subnetwork" "private_network" {
 network_pool_id = "QeZ89zQb"
 title = "Custom private_network"
 mask = 29
}

Create a new Subnetwork by CIDR:

resource "serverscom_subnetwork" "private_network" {
 network_pool_id = "QeZ89zQb"
 title = "Custom private_network"
 cidr = "10.0.0.0/29"
}

Argument Reference

The following arguments are supported:

	network_pool_id - (Required, string) ID of the Network Pool.

	cidr - (Optional, string) CIDR of the Subnetwork.

	mask - (Optional, string) Mask of the Subnetwork.

Attributes Reference

The following attributes are exported:

	id - (string) Unique identifier of the Subnetwork.

	title - (Optional, string) Title of the Subnetwork.

	cidr - (string) CIDR of the Subnetwork.

	mask - (int) Mask of the Subnetwork.

	network_pool_id - (string) Network Pool ID of the subnetwork.

Import

Subnetworks can be imported using the Subnetwork id:

terraform import serverscom_subnetwork.private_network <id>

 _static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/comment-bright.png

_static/ajax-loader.gif

